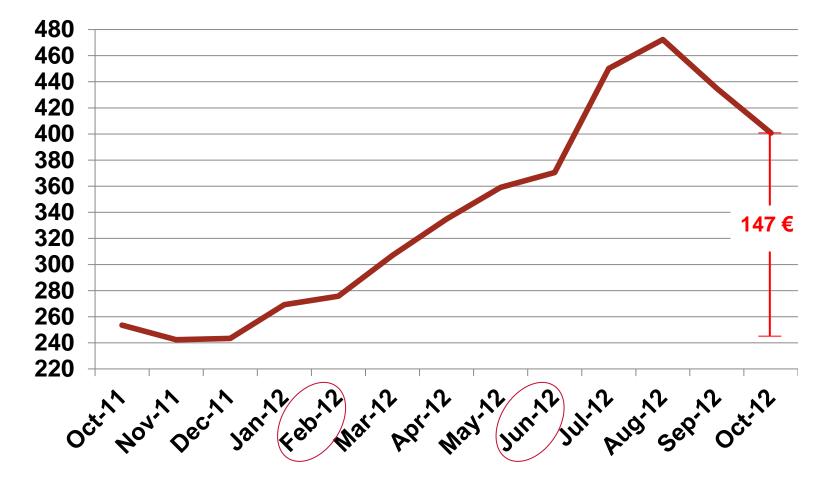


Benefits of protease on top of carbohydrases at times of high protein prices in poultry


14 NOVEMBER 2012

Ahmed Amerah, Global Technical Manager, Danisco Animal Nutrition

Soybean meal prices (€)

Source: http://www.indexmundi.com/commodities/?commodity=soybean-meal&months=12¤cy=eur

In the news

- Nov 7 (Reuters) U.S. <u>wheat, corn and soybeans rose</u> on Wednesday as global markets rallied following President <u>Barack Obama's election victory</u>, while an export-boosting fall in the U.S. dollar also supported.
- Nov 7 (Reuters) Argentina's 2013 soybean crop may be <u>3</u> <u>million to 6 million tonnes below earlier forecasts</u> of 55 million to 56 million tonnes <u>as repeated rain is disrupting</u> <u>sowing</u>.

Presentation objective

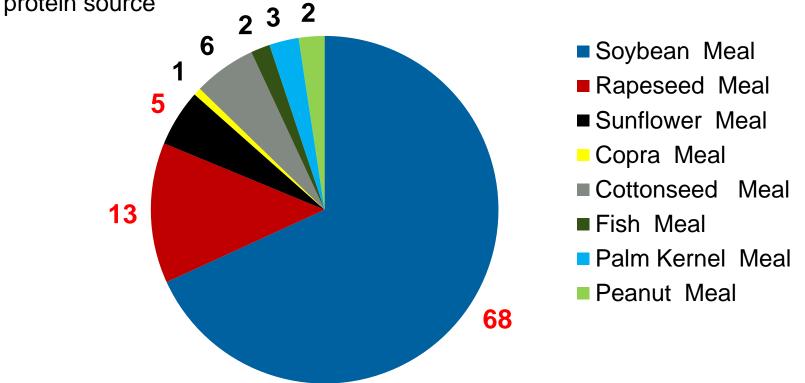
How DuPont/Danisco Animal Nutrition can help reduce feed costs at times of volatile vegetable protein prices

Some strategies to cope with high raw material prices

- New raw materials
- Greater focus on quality issues
- Feed formulation strategies (e.g. decrease energy/ nutrient levels with some loss of performance)
- Increased use of feed additives (<u>enzymes</u> and synthetic amino acids)
- Maximise nutrient extraction (<u>enzymes</u>, feed processing)

Presentation overview

Soybean meal alternatives

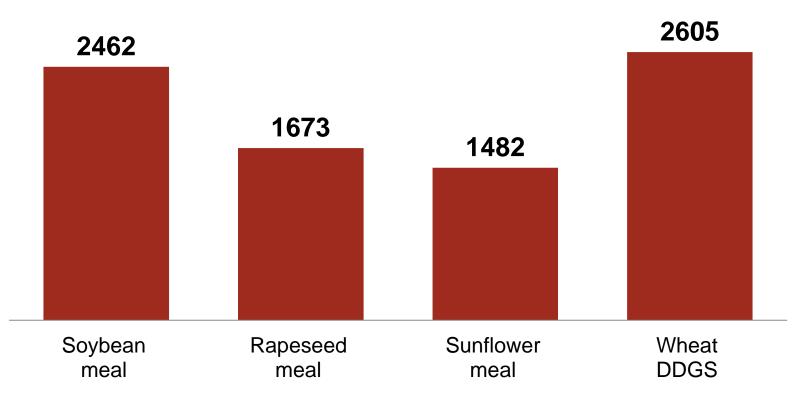

Features of Danisco protease

Research data to support the use of protease

Major protein meals production % (2012)

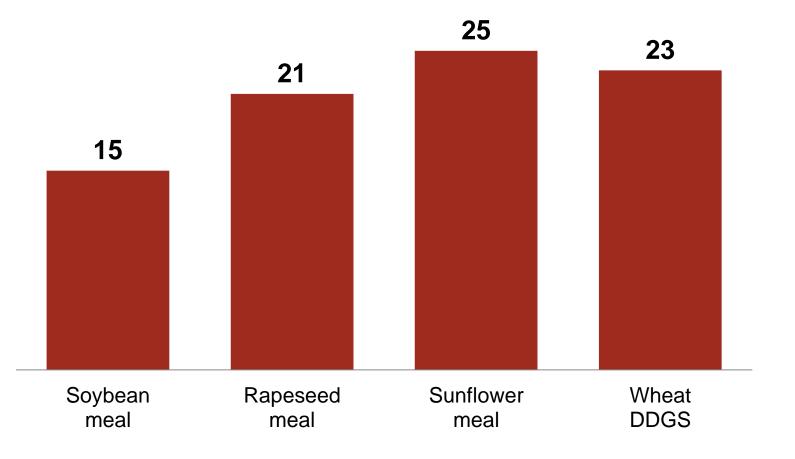
The second largest component of poultry feed after cereals is the protein source

United States Department of Agriculture Foreign Agricultural Service


Comparison of protein level and digestibility in some vegetable protein sources (% "as received")¹

	CP level	CP digestibility	Cost/t (€)	Cost (€) per unit of dig. protein
Soybean meal	48.0	89	462	10.7
Rapeseed meal	34.0	78	288	10.9
Sunflower meal	28.0	83	233	10.0
Wheat DDGS	37.5	71	265	10.0

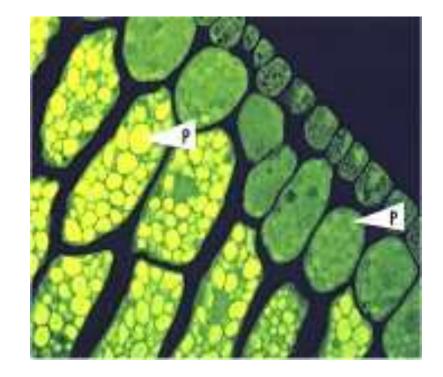
¹ Premier atlas, ingredients matrix 2008 ; Cozannet et al. 2009 and 2010


Metabolisable energy in some vegetable protein sources (kcal/kg)

Source: Premier atlas, ingredients matrix 2008

Non-starch polysaccharide in some vegetable protein sources (% dry matter)

Source: Danisco Non Starch Polysaccharide (NSP) database (2012); Widyaratne and Zijlstra (2007)


Soybean meal proteins

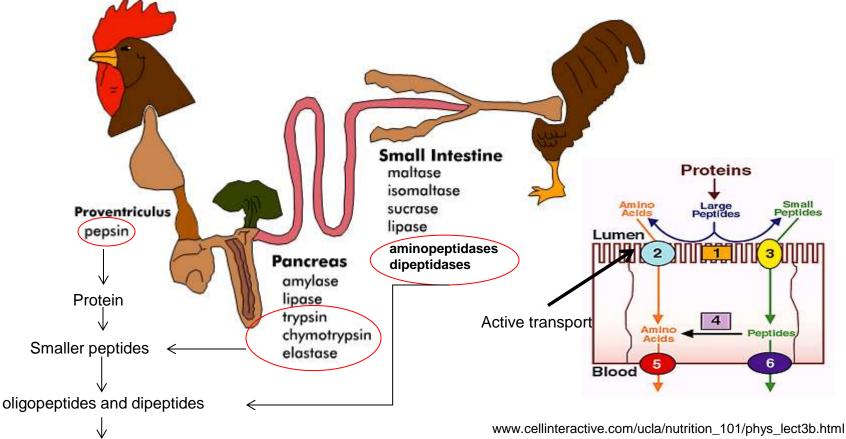
Glycinin + β-conglycinin 80%

Antinutritional factors 5%

Other proteins

15%

P = protein bodies



Global soybean meal survey (88% DM)¹

	n	DM	СР	CF	NDF	EE	TIA (g/kg)
ARG	136	885	45.4 ^c	4.8 ^b	9.2 ^b	1.7 ^{ab}	2.5 ^b
BRA	131	88.6	46.6 ^b	5.5 ^a	10.6 ^a	1.8 ^a	2.6 ^b
USA	164	88.6	47.3 ^a	3.8 ^c	7.8 ^c	1.6 ^b	3.1ª
SEM		0.08	0.12	0.08	0.13	0.04	0.05
Р		NS	***	***	***	**	***

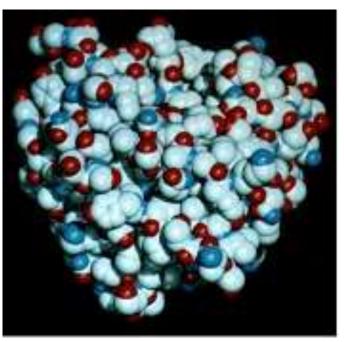
¹Source: Mateos 2012

Protein digestion

amino acids, dipeptides and tripeptides

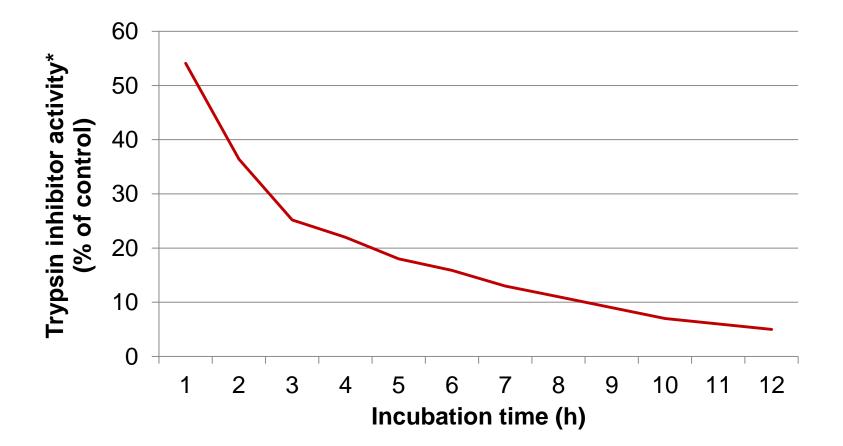
Agenda

High prices and volatility of soybean meal


Features of Danisco protease

Research data to support the use of protease

OPPN?


The protease in Avizyme[®] 1505

- Bacillus Subtilis serine endopeptidase
- Designed for rapid hydrolysis of proteins
- Degrades Soybean storage proteins
- Degrades soybean anti-nutritional factors proteins

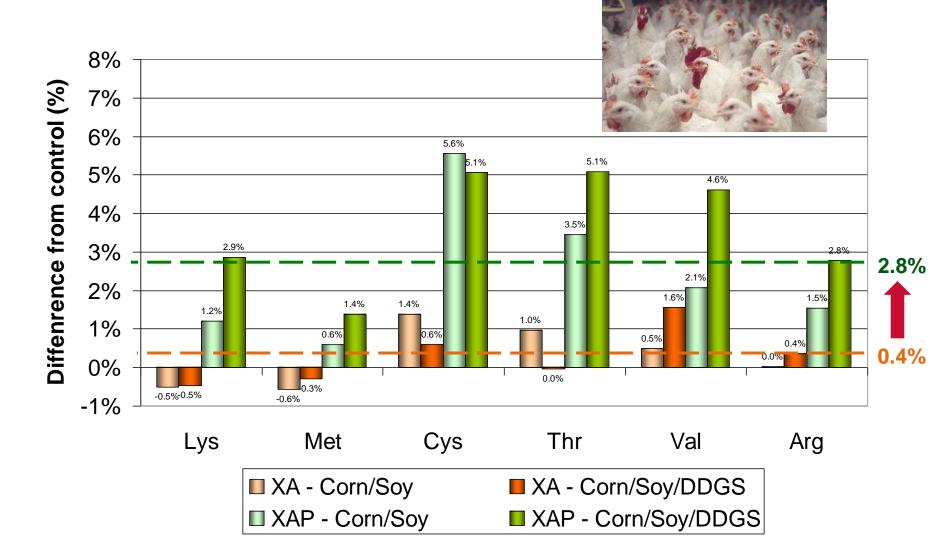
Effect of Danisco protease on trypsin inhibitor activity in raw soybean

Agenda

High prices and volatility of soybean meal

Features of Danisco protease

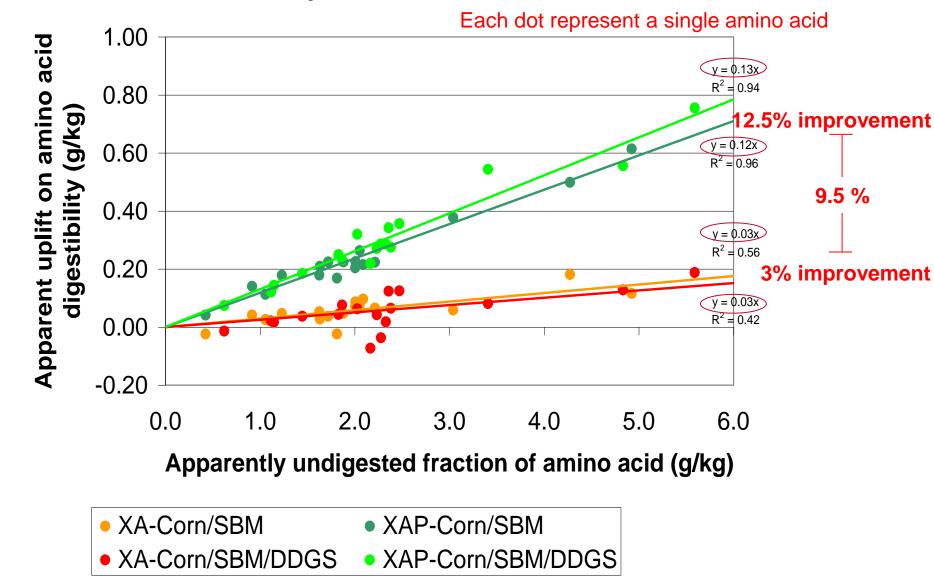
Research data to support the use of protease



Effects of protease on top of XA on amino acid digestibility in diets with or without corn DDGS

- Meta-analysis of 4 Trials with similar design: Massey University, NZ and U. of Illinois, USA
- 21-d digestibility trials
- Ross 308 males
- Three treatments in each trial: control, XA, and XAP (Avizyme 1505)
- Two trials with corn/SBM based and two trials with corn/SBM/DDGS (7-10%)
- Amino acid digestibility evaluated on an apparent ileal basis
- Titanium oxide was marker
- Mixed Procedure of SAS. Experiment was random term

Addition of XAP increased amino acid digestibility by <u>2.8%</u> compared to <u>0.4%</u> for XA



Why are there differences in the response to enzymes between the different amino acids?

OPPN?

Avizyme 1505 (XAP) effects on undigested fraction of amino acids were very consistent

Amino acids with high concentration x low digestibility had greater improvements due to Avizyme[®] 1505

1.

Corn/SBM							
					505 effect		
Amino acid	lleal digestible (g/kg)	lleal digestibility (%)	lleal undigested fraction (g/kg)	Digestibility coefficient (%)	lleal digestible (g/kg)		
Lysine	12.2	87.1	1.81	1.4	0.17		
Methionine	5.9	93.3	0.42	0.7	0.04		
Cysteine	2.4	72.2	0.91	5.8	0.14		
Threonine	6.1	75.3	2.01	3.7	0.23		
Valine	8.6	81.1	2.00	2.4	0.20		
Total of 17 A.A			34.61		4.10		

Improvement due to Avizyme 1505 = 11.8%

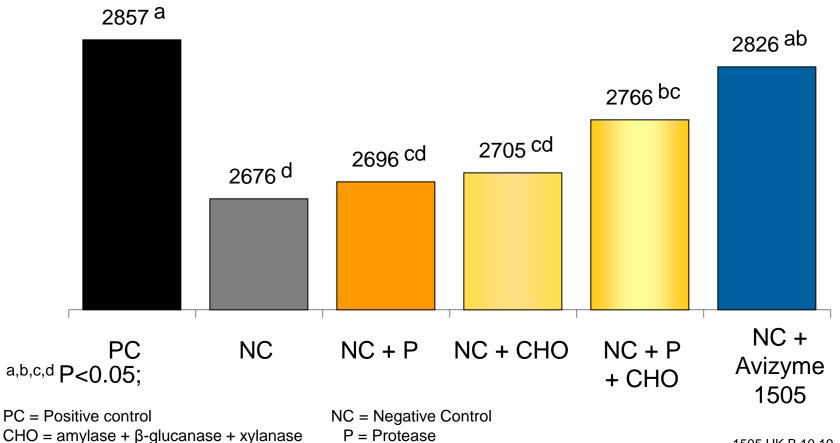
Amino acids with high concentration x low digestibility had greater improvements due to Avizyme[®] 1505

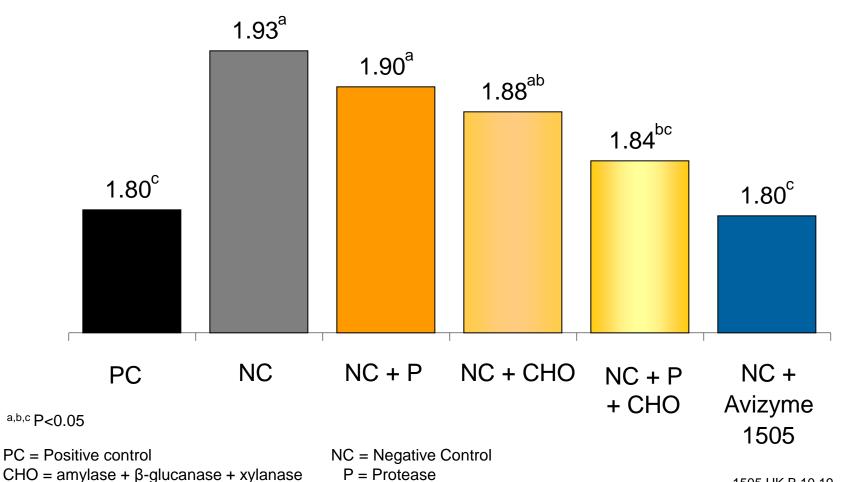
1 ml

Corn/SBM/DDGS							
		Avizyme 1505 effect					
Amino acid	lleal digestible (g/kg)	lleal digestibility (%)	lleal undigested fraction (g/kg)	Digestibility coefficient (%)	lleal digestible (g/kg)		
Lysine	10.8	82.6	2.28	2.6	0.29		
Methionine	5.7	90.1	0.62	1.3	0.07		
Cysteine	2.5	68.9	1.12	4.9	0.12		
Threonine	5.8	71.3	2.33	4.9	0.29		
Valine	8.0	77.3	2.36	4.3	0.34		
Total of 17 A.A			40.10		5.22		

Improvement due to Avizyme 1505 = 13%

What does that mean?

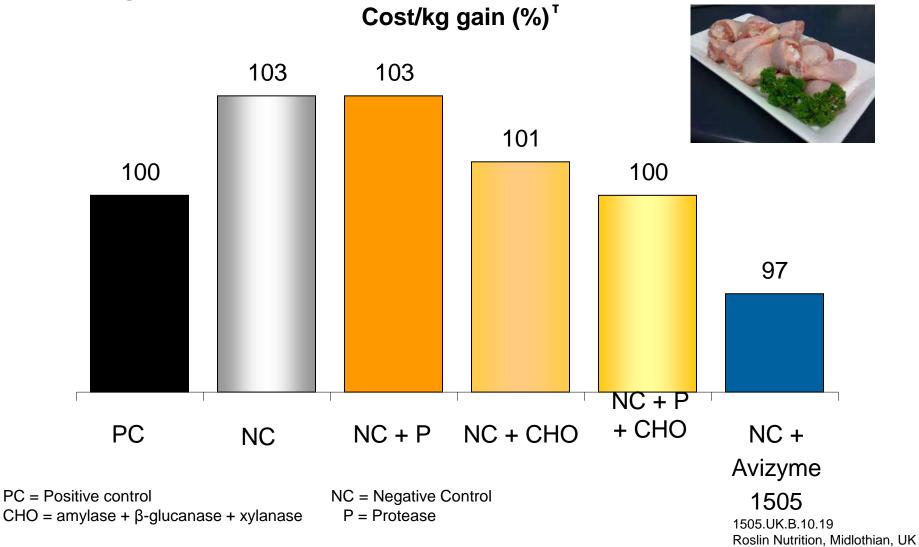

XAP effects on amino acid digestibility may be predicted based on ileal undigested fraction: ~12.5% of ileal undigested amino acids


DESIGN

- **720** male Ross 308 broiler chicks housed in floor pens
 - 6 treatments with 8 pen replicates/treatment and 15 birds/pen
 - Corn/Wheat/Wheat DDGS/Soybean meal-based mash diets
 - 6 dietary treatments
 - Positive control (PC)
 - Negative control (NC; 85kcal ME/kg feed, 2.5% amino acids versus PC)
 - NC + 200 g/t competitor protease
 - NC + 500 g/t competitor carbohydrase (Amylase + β -glucanase + xylanase)
 - NC + 700 g/t competitor protease + carbohydrase (Amylase + β-glucanase + xylanase)
 - NC + 200 g/t Avizyme 1505
 - Birds and feed weighed at 42 days of age

Weight gain (g, 1-42 days)

1505.UK.B.10.19 Roslin Nutrition, Midlothian, UK



FCRc* (1-42 days)

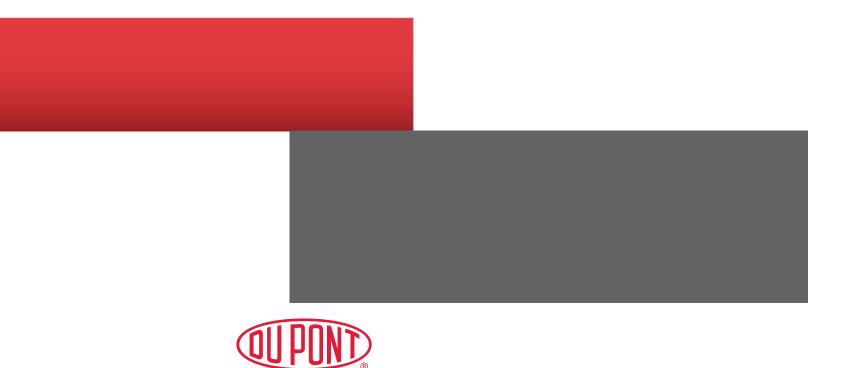
* FCR corrected 3 points for every 100g difference in bodyweight versus the Positive control

1505.UK.B.10.19 Roslin Nutrition, Midlothian, UK

^T Expressed relative to the Positive control, including product prices

Danisco Animal Nutrition can help reduce feed costs at times of volatile vegetable protein prices

	Basal diet (BD)*	BD + Avizyme 1505 (CP&AA)*	BD + Avizyme 1505 (full matrix)*	Ingredient price (€/t)			
Corn	48	50	51	245			
Wheat	15	15	15	235			
SBM 48%	28	26	26	477			
Rapeseed meal	3.0	3.0	3.0	300			
Soy oil	3.1	2.9	1.6	910			
Economics							
Feed cost (€/t)	339.3	337.3	328.6	-			
Net savings (€/t)	-	-2.0	-10.7	-			


* Calculated analysis for all diets: 20% CP and 12.7 MJ/kg ME

Conclusions – Take home messages

- Protease on top of XA increased digestibility of undigested amino acid fraction from ~3.0% (XA) to 12.5 % (XAP)
- In the current situation of high raw material prices, enzymes are one of the tools to help reduce the price pressure on poultry producers and consumers
- Using matrix values for Avizyme 1505 (energy, protein and amino acids) allows reductions of 10.7 €/t and for protein and amino acids 2.0 €/t

The miracles of science™

Copyright © 2012 DuPont or its affiliates. All rights reserved. The DuPont Oval Logo, DuPont[™] Danisco[®] and all products denoted with [™] or [®] are registered trademarks or trademarks of E. I. du Pont de Nemours and Company or its affiliates.