EFFICACY OF *Buttiauxella* PHYTASE IN CORN SOYA BASED LAYER DIET ON EGG PRODUCTION PERFORMANCE AND NUTRIENT DIGESTIBILITY

A. KUMAR¹ AND Y.DERSJANT-LI²

¹ School of Agriculture and Food Science, University of Queensland

² Danisco Animal Nutrition/DuPont, UK

Conventional sources of P and their limitations

- P from grains, seeds and their by products: Low P availability (10-30%) due to phytate bond and lack of phytase in poultry
- P from animal by products: Ban on using in stock feed
- P from inorganic source: High cost, pollution and health hazard

Alternative source of P is Phytase enzyme

Phytase enzyme can be produced from different microbes e. g.

- E.coli
- Peniophora
- Citrobactor
- Buttiauxella

Aims and objectives of this study

Investigate the efficacy of *Buttiauxella* phytase (Axtra[®] PHY, expressed in *Trichoderma reesei*) on egg production performance, nutrient digestibility and bone characteristics

Experimental Design

•240 ISA brown layers; 34 week study (26-60 wks of age)

•3 treatments with 16 replicate cages each

1).Positive control

2).Negative control: Phase-1: reduced avP (by 0.2%) and Ca (by 0.16%); Phase-2: reduced avP (by 0.18%) and Ca (by 0.15%)

3).Negative control + 300 FTU/kg Buttiauxella Phytase

•5 hens/cage

Corn soy based mash two phase diet

Measurements:

Production:

Egg production, Egg mass, Feed intake, FCR.

Digestibility: DM, GE, N, PhyP, Fecal P,

Tibia: Ash, Phosphorus and Calcium.

Ingredient and nutrient composition of the diets (%)

Ingredients	Positive control	Negative control	Positive control	Negative control
	Phase 1		Phase 2	
Maize	57.67	59.31	57.14	58.64
SBM, Rice bran, Oil, Lime, Salt, Vitamins, Minerals, Amino Acids and Pigments	41.07	40.59	41.83	41.36
DCP	1.26	0.10	1.03	0
Av. phosphorus %	0.33	0.13	0.29	0.11
Calcium %	3.63	3.47	3.80	3.65
CP %	16.35	16.35	16.35	16.35
ME Cal/kg	2820	2818	2811	2811

THE UNIVERSITY OF QUEENSLAND AUSTRALIA

Results

Production performance (34 wks)	PC	NC	NC+300 FTU	P
Egg Production (HH) %	89.96 ^{ab}	87.48 ^b	92.36 ^a	0.01
Egg Production (HD) %	91.06 ^{ab}	89.03 ^b	92.36 ^a	0.01
Egg Weight (g/egg)	66.69 ^a	64.72 ^b	67.21 ^a	0.005
Egg Mass (g/hen/day)	60.00 ^a	56.65 ^b	62.18 ^a	0.0006
Feed Intake (g/hen/day)	119.37	115.81	117.23	0.17
FCR (g feed/g egg)	1.971 ^a	2.012 ^a	1.886 ^b	0.001
Mortality (%)	5.00 ^{ab}	6.25 ^a	0 ^b	0.05
Weight change(g/hen)	8.69 ^a	-173.69 ^b	-47 .5 ^a	0.0001

a,b,c Values within rows with the same superscript are not significantly different (P < 0.05)

Nutrient Digestibility	PC	NC	NC+300 FTU	Р
Dry Matter (%)	66.5 ^b	69.62 ^a	70.00 ^a	0.01
Gross Energy (%)	77.42	78.45	78.53	0.38
Nitrogen (%)	48.40	48.77	48.77	0.98
Phytate P (%)	28.24 ^c	48.49 ^b	62.80 ^a	0.001
Fecal P (%)	26.66 ^b	33.51 ^{ab}	38.24 ^a	0.06
Fecal Ca (%)	55.02	51.88	57.17	0.17
Tibia Ash (%)	55.69 ^a	53.68 ^b	54.71 ^{ab}	0.05

a,b,c Values within rows with the same superscript are not significantly different (P < 0.05)

CONCLUSIONS

- Hens fed the standard P diet (PC) performed significantly better than those fed the low P (NC) diet
- Production performance and phytate P digestibility of hens fed the NC diet can be significantly improved by *Buttiauxella* Phytase supplementation at 300 FTU /Kg
- Buttiauxella phytase supplemented at 300 FTU/kg can replace 0.18 to 0.20% avP and 0.15% Ca in corn soy based layer diet without affecting egg production performance

