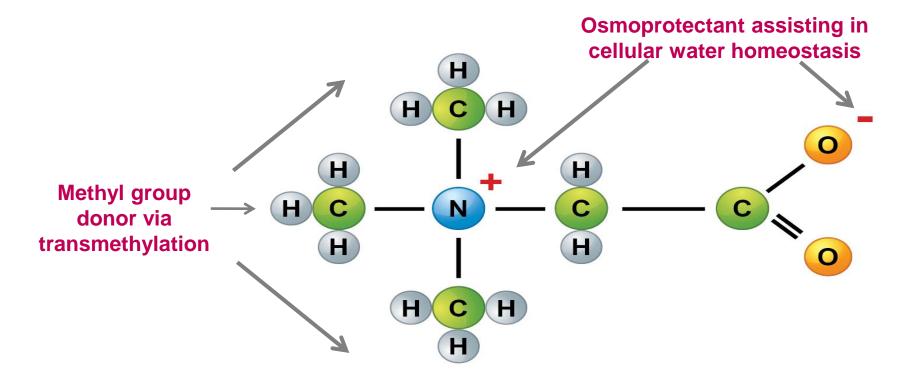
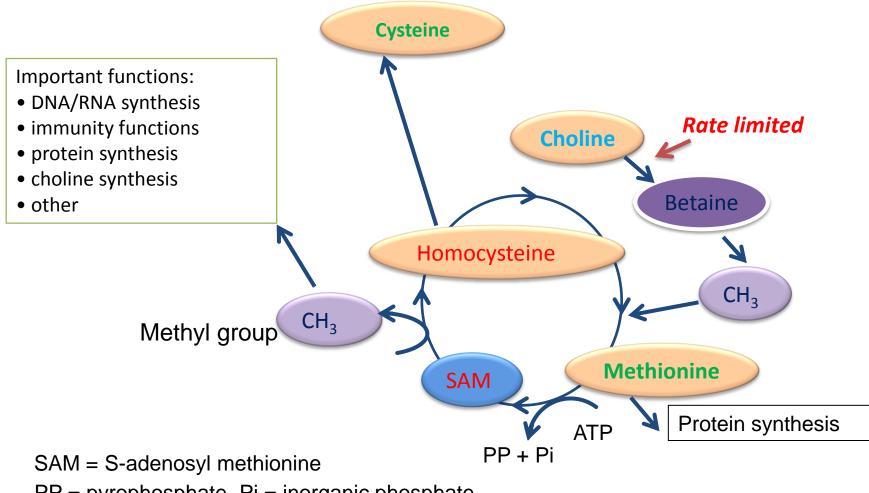
BETAINE INCREASES PERCENTAGE HATCHED IN BROILER BREEDERS

D.J. CADOGAN¹, T.WILSON², L.MORRISROE³ and P. SCOTT² ¹Feedworks, ²Scolexa, ³Turi Foods

The miracles of science™

Betaine's function in nature


- The role for betaine in animals, plants and microorganisms is to protect cells against osmotic inactivation
- Plants and bacteria produce and accumulate betaine to cope with salt and temperature stress¹


What makes Betafin[®] natural betaine special?

Betafin[®] natural betaine has two functions from the same molecule

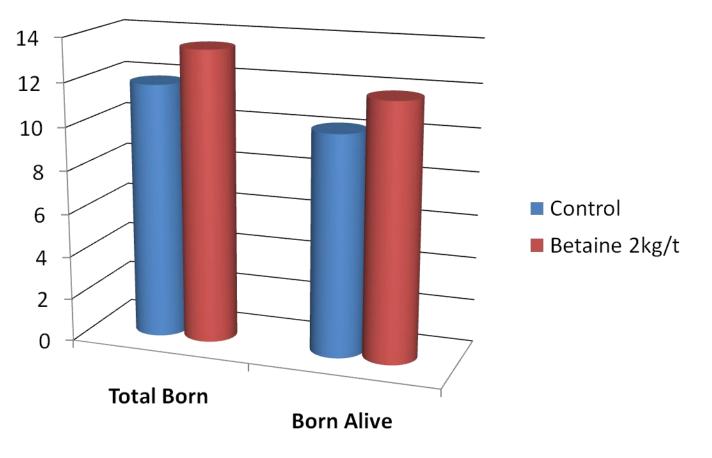
Chemically, betaine is the trimethyl derivative of the amino acid glycine with a formula of $(CH_3)_3NCH_2COO$ and a molecular weight of 117.2

The Methylation Cycle

PP = pyrophosphate, Pi = inorganic phosphate

Reported effects of Betaine in poultry

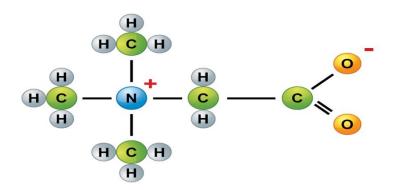
- Spares choline and methionine
- Improves gut health and function
- Decreases effects of heat stress
- Increases carcass and breast meat yield



- Reduces coccidiosis lessions (additive effect in combo with ionophores)
- Reduces excreta moisture (improved litter quality)
- Increased immunity against viruses
- EKLUND, M., BAUER, E., WAMATU, J. and MOSENTHIN, R. (2005) Potential nutritional and physiological functions of betaine in livestock. Nutrition Research Reviews 18: 31-48

Betaine increases embryo survival in sows

- High blood Homocysteine increases risk of embryo mortality post 21 days gestation
- Betaine significantly reduces homocysteine
- Betaine in gestation/dry sow diets significant improves embyro survival (van Wettere et al, 2012)


Effect of betaine on total born and born alive supplemented to gestating sows

(van Wettere et al, 2012)

Hypothesis

Supplemental betaine enters the egg and improves percentage hatched in the broiler breeders

Experiment 1: Betaine manipulation in the egg

- 60 Hyline brown laying hens @ 50 weeks of age
- Housed in individual cages
- 2 treatments arranged in a randomise factorial design
 - Sorghum soybean based control
 - Control diet supplemented with 1000ppm natural Betaine (Betafin S1)
- Diets offered for 42 days
- Eggs collected after 10 days pre-treatment
- Contents of eggs were emptied into one vessel each week, homogenised and subsample analysed for betaine content

Performance

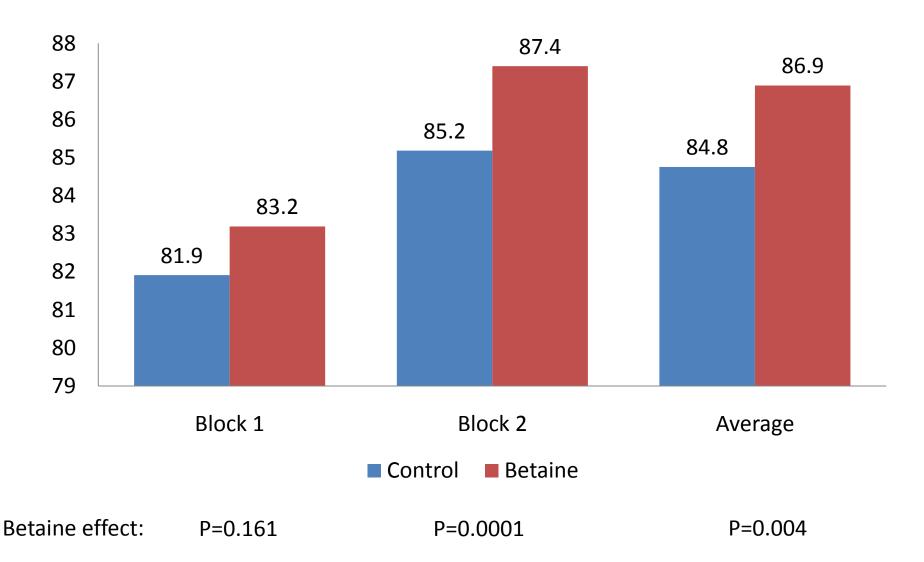
Treatment	Egg Wt (g)	Egg Wt (g/wk/rep)	Egg No. (per wk/bird)	Feed Intake (g/rep/wk)	FCR (g:g)	Lay %
Control	61.2	1129.2	5.88	2196.2	1.99	83.97
Betaine	62.7	1132.8	5.87	2219.3	2.00	83.81
P =	0.23	0.96	0.95	0.75	0.92	0.92
SEM	0.829	49.55	0.11	51.28	0.094	1.02

Betaine content of the egg

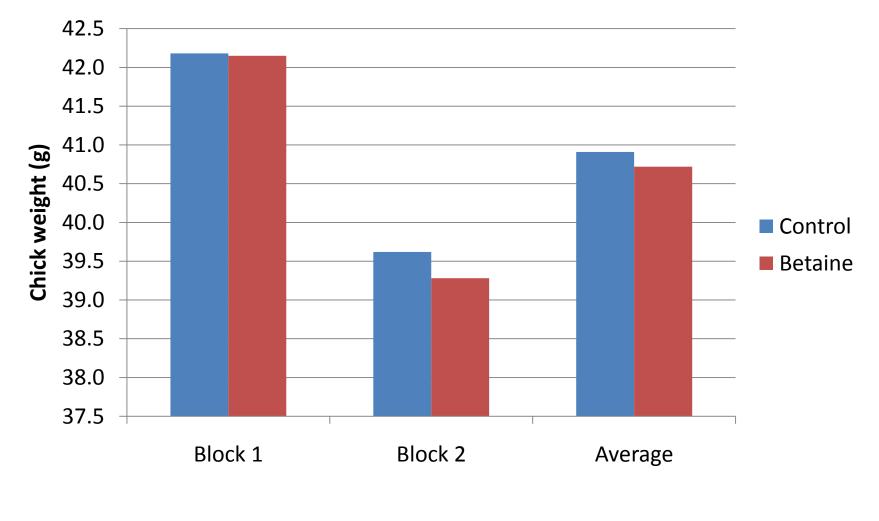
Treatment	Week 2	Week 3	Week 4	Week 5	Week 6	Average*
Control (mg/100g)	0.38	0.50	0.56	0.46	0.40	0.46
Betaine (mg/100g)	1.30	1.36	1.20	1.64	1.34	1.37

*The addition of 1 kg/tonne or 1000ppm of betaine to the diet increased the content by 0.91 mg/100g in the egg (P<0.001).

Experiment 2: Commercial evaluation of betaine in broiler breeders

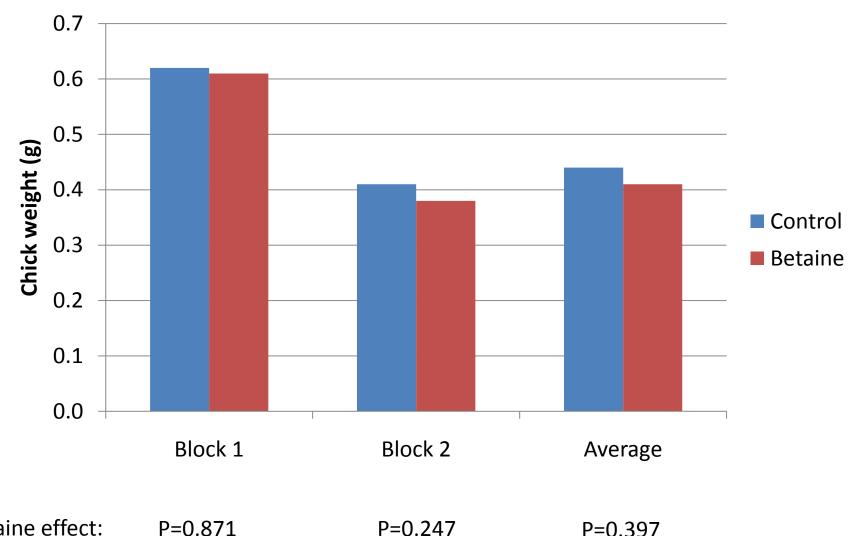

- Turi Foods Bannockburn breeder Farm (study overseen by Scolexia)
- Approx 7,000 Ross 308 hens per shed, with 8 males per 100 hens.
- The sheds are 100% deep litter.
- The treatments were two levels of natural Betaine (Betafin S1, Danisco), at 0 and 2000ppm.
- The study began when hens were 25 weeks of age, and ended when the hens were 55-56 weeks old.
- Percentage hatched, chick weight and percentage of chick culls were recorded 3 times a week.

Experiment 2: continued


- The experiment was run in two blocks, with a cross-over of treatments so that no one treatment was offered to the same shed.
- One shed per treatment per block
- First block was run in 2012 Autumn early winter, using natural nesting boxes
- The second block run in 2013 late winter and spring, using Jansen nesting boxes

Effects on Hatchability

Effects on chick weight



Betaine effect:

P=0.487

P=0.614

Actual percentage culls

P=0.397

Betaine effect:

Implications

- Results suggest modern nesting boxes improve hatchability and reduce culls
- Increasing percentage hatched may impact on lower chick weights
- Significant influence of betaine on hatchability

Conclusions

- Supplemental natural betaine increases the betaine content of the egg.
- Betaine supplementation significantly increased percentage hatched (without negative impacted on chick weight)
- Betaine can potentially save the broiler industry a net \$8.3 million
- More work required on the effects on progeny growth