

July 14-16, 2014 103rd Annual Meeting of the Poultry Science Association Corpus Christi, Texas

Sponsored by:

"The Role of the Poultry Industry in Feeding the World in 2050" Symposium

INDUSTRIAL BIOSCIENCES

What Role Can Science and Technology Play?

PSA, Corpus Christi 15th of July 2014 Charlotte Horsmans Poulsen,

OUPOND.

Outline

Food Security Index

- How enzymes and/or direct fed microbials
 - » Can help the industry to produce more protein
 - » Increase food safety and shelf life of meat
 - » Can enable new alternative raw materials
- Future technologies
 - » Which might change the industry

Summary

The DuPont Global Food Security Goals

By the end of 2020, DuPont will help the world meet the challenge of achieving global food security

Innovating to Feed the World

We will commit \$10 billion to R&D and 4,000 new products will be introduced.

Engaging and Educating Youth

We will facilitate two million engagements of young people around the world in educational opportunities.

Improving Rural Communities

We will work to improve the livelihoods of at least three million farmers and their rural communities through targeted collaborations and investments.

The Global Food Security Index

DuPont commissioned the Economist Intelligence Unit in 2012 to develop the Global Food Security Index

- Ranks 109 countries according to their relative levels of food security using 29 indicators divided into three categories: Affordability, Availability, Quality and Safety.
- Provides a rigorous, structured framework for understanding the drivers of food security.

Visit foodsecurityindex.eiu.com

Protein Needs Are Increasing

FAO* expects world demand for (animal-derived) protein to double by 2050

- Increasing population (9 billion by 2050)
- Emerging economies
- Increasing urbanization
- Recognition of protein's role in a healthy diet
- Increased need for protein in the elderly population

Improvement in Slaughter Weight Versus Feed Conversion Ratios*

*Amount of feed required for 1Kg weight gain

Still Genetic Potential to be Captured

Enzymes Work by Targeting Specific Substrates

Substrate	Effect of substrate	Enzyme
Soluble viscous NSPs (e.g arabinoxylans)	 ↑ viscosity and digesta retention time ↓ nutrient absorption ↑ proliferation of intestinal microflora 	Xylanase
Insoluble, non-viscous NSPs	↓ accessibility of nutrients by physical entrapment	Xylanase
Starch	Metabolisable energy ↑ substrate for gut microflora	Amylase
Protein	Metabolisable energy and AA ↑ substrate for gut microflora (neg)	Protease
Lipid	↑emulsification, digestibility of lipids	Lipase
Raffinose and stachyose	Undigestible by animal enzymes	α-galactosidase
Beta glucan	\uparrow viscosity and digesta retention time	β-glucanase
Phytate	Binds minerals, protein and starch	Phytase

Exogenous Enzyme Solutions for Complex Diets.

What Positive Impact Does the Animal Get?

Enzymes Reduce the Amount of Undigested Substrate Reaching the Lower Gut

X: Xylanase; A: Amylase; P: Protease

Adapted from Romero et al., 2012

Direct Fed Microbials (DFMs) –

What Are the Beneficial Effects for the Avian?

Health

- \downarrow Lower mortality
- ↑ Stimulates serum antibody
- ↑ Stimulates gut Ab (sec IgA)
- ↓ Systemic, asymptomatic inflammation
- ↓ Enteric pathogen levels
- ↓ Foodborne pathogen levels

Performance

- ↑ Final body weight
- ↓ Feed Conversion Ratio
- ↑ Egg production

DFMs – How Do They Do Their Work?

POWERED BL. JUNIO

Enzymes and DFMs in Poultry Nutrition

The advantage of enzymes	The advantage of DFMs
Hydrolyze substrate	Live organisms
Specific	 Metabolism <i>in-situ</i>
• Fast	Reproduce
 pH dependent 	 Adapt to substrates in the gut
Functionality can be designed	Modulate microbial populations
Catalysts	Modulate immunity

Inorganic Phosphorus: A Non-Substitutable and Finite Resource

Inorganic Phosphorus: A Non-Substitutable and Finite Resource

There are no substitutes for phosphorus in agriculture

•As world phosphate demand grow, both for animal feed and fertilisers, increasing price pressures will continue

(U.S. Geological survey, 2010)

(World Bank, 2012)

Phytate also Known as IP6 is the Natural Store of Phosphorus in Plants but the Content is Variable

Phytate Degradation by Phytase Increases Protein Digestibility

There is a strong correlation between phytate breakdown and protein digestibility in vivo

Phytate Increases Costly Endogenous Secretions

Annually, Roughly 1/3 of all Food Produced...... is Wasted.*

High social impact High risk problem Highly multidisciplinary

Source: FAO.

* FAO Stats 2011, http://faostat.fao.org

As Scientists, Can We Mitigate Even a Small Percentage of Food Wastage?

Raw Milk Preservation - an Example

The Problem

Extending the **shelf life of raw milk**, where no refrigeration is available, for a period of approximately 15-18 hours.

A Solution

An enzyme from DuPont, HOX or Hexose Oxidase, to stimulate the milk's natural defenses against spoilage bacteria.

DuPont[™] Danisco[®]

Food protection ingredients

Our food protection solutions help you deliver taste, freshness, food safety and food waste reduction.

Fermented Fresh Dairy Cheese Cured Meats Yeast & Mold Inhibition Pathogen Inhibition

Gram-Positive Control Gram-Negative Control Yeast & Mold Control

Single Plant Extracts Proprietary Blends of Natural Extracts

HOLDBAC[®] Protective Cultures

HOLDBAC® Protective Cultures

- Strains selected for their natural but remarkable inhibition properties towards specific contamination flora, e.g. Listeria
- Protective capabilities validated through extensive challenge studies.
- To be applied as such or in combination with maturation starters
- Mild maturation functionalities, designed to be compatible with a large range of applications

QU PONT.

HOLDBAC[®] Protective Cultures in Dried Fermented Sausages

A Look at the Future

OU PONT.

Future Feed Stocks – New Challenges

Protein for poultry from grass

28

Algae from ethanol plant shows promise as poultry feed

http://ethanolproducer.com/articles/8220/algae-fromethanol-plant-shows-promise-as-poultry-feed

The Insect Cookbook

Food for a Sustainable Planet

ARMINIST DAM MARK, HENRYARM SLEPP, AND HARDERS, DOCKE

Biomass Challenge

- 1. Hemicellulose: broken down with exogenous enzymes eg. Xylanase
- 2. Cellulose: Crystalline structure, difficult for enzymes to access
- 3. Lignin: non-fermentable, no energetic value for animals

QU PONT.

Some Technical Advances Which are Game Changers

Gene expression microarray analysis, RNA sequencing Pyrosequencing/Bioinformatics database growth Epigenetics Metabolomics

We are now capable of knowing:

1. Which host genes are up or down regulated.

. . .

- 2. The temporal gut microbial profile qualitative and quantitative
- 3. The metabolic response

The Omics Toolbox

More 'omics tools needed to understand the complexity of live organisms

Personalised Nutrition/Medicine

http://www.hireanillustrator.com/i/49708/new-illustration-for-nature-magazine-medical-genomics/

Meat Without Animals

http://www.oxbridgebiotech.com/review/research-and-policy/is-in-vitro-meat-the-future-of-food-production/

https://www.fstjournal.org/features/27-1/cultured-beef

Summary

- Dupont is committed to Food Security
- Enzymes and DFMs
 - » Increased animal production efficiency
 - » More sustainable production
 - » Healthier better perfoming animals
- Reduced food waste
- New alternative non-food feedstocks
- New technologies
 - » Understanding of physiology at gene level
 - » Alternative meat production methods

OVATIO SOI 9

BR

PRESERVE BETTEL ET MORE NUTRITION OUT OF EVERY BITE. MPROVE THROUGH SCIENCI MAKE A DIFFERENCE. CHANGE LIVES. ACT LOCALLY.

PROVIDE FOOD WHERE IT'S NEEDED.

8 DISCOVER. MAXIMIZE YIELDS COLLABO 019 REALIZE A CROP'S POTENTIAL. PLANT NEW THOUGHTS.

ASK QUESTI USE I INCREASE SHELF LIFE. INSPIRE ONE ANOTHER. Welcome to The Global Collaboratory.™ BREAK NEW GROUND. HARVEST SOLUTIONS.

SHARE

ROLL UP

SHAKE

EVERY /

Charlotte Horsmans Poulsen charlotte.poulsen@dupont.com

Acknowledgements

- Luis Romero
- Greg Siragusa
- Ajay Awati
- Gary Partridge
- Heike Morgenstern
- Karsten M Kragh
- Marc Kolkman
- Henrik Max Jensen
- Steve Betz

